The Economic Tradeoffs in Timber Products Under Various Carbon Management Strategies for Maryland and Pennsylvania

Raju Pokharel, Assistant Professor

Shivan Gc, Research Assistant

Kylie Clay, Associate Director, FCCP

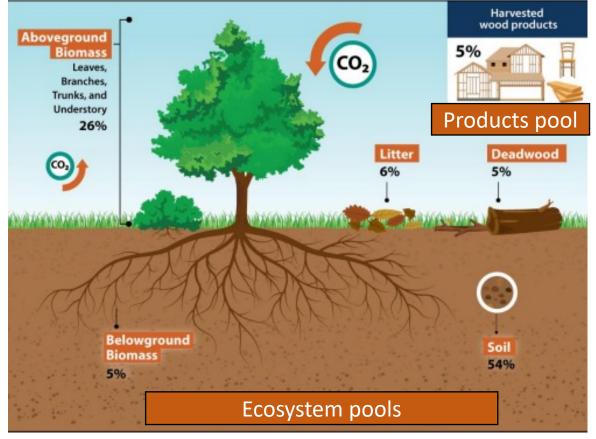
Chad Papa, Research Assistant

Department of Forestry MICHIGAN STATE UNIVERSITY

Forest Carbon and Climate Program Department of Forestry MICHIGAN STATE UNIVERSITY

2/1/2023

Outline


- Background
- Objectives
- Scenarios
- Methods
- Findings

Background

- Forests play an important role in mitigating the effects of climate change
- In 2020, U.S. Forests sequestered 767 MMT CO₂ equivalent (offset of 13% gross GHG emissions) (Hoover and Riddle 2022)
- Growing recognition of forest's role in climate change has spurred interest to understand how such benefits from forests can be bolstered in the future

Source: Hoover and Riddle (2020)

A framework of climate smart forestry

Background

The Department of Natural Resources in Maryland and Pennsylvania contracted with Michigan State University Forest Carbon and Climate Program (MSU FCCP)

I. Understand the impact of existing forests and mgmt. practices on emissions level at present and forest's health and climate benefits in the future

II. Understand how different carbon mgmt. scenarios would perform in terms of carbon sequestration in the future

Penn Soil RC&D contracted with MSU to further look at the economic tradeoffs of the modeled forest management actions resulting from the earlier project

Objective

To quantify financial tradeoffs of carbon and timber products resulting from the CBM-CFS management scenarios for increasing carbon compared to the business as usual (BAU) scenario.

Management Scenarios in CBM-CFS

1. Business-as-usual (BAU) Scenario:

-Represents continuation of current management practices (harvests, thinning, and prescribed burn). Projection starts from 2020 till 2170.
-Basis for comparison to alternative scenarios

• <u>2. Alternative Management Scenarios</u>

-Created by changing BAU parameters beginning in 2020 representing potential changes

in future management decisions or disturbance events.

-Scenarios relate to one specific practice or objective, where only one BAU practice

is changed and the rest of the BAU remains the same.

I. <u>Extending Rotations : (Increase average harvest age of stands)</u>

Extended Rotation(+ 30 years on all HWs and SWs and –10 years on Aspen stands until 2170 in PA) Extended Rotation(+ 30 years on all HWs and +20 years on Loblolly Pine in MD until 2170) Extended Rotation Alt.(+ 30 years on all HWs and +40 years on Loblolly Pine in MD until 2170)

II. Increasing Afforestation (Four scenarios):

afGGRA2030 (+2,376 acres/yr until 2030; then return to BAU in PA) (+350ac/yr till 2030 in MD) afGGRA2050 (+2,376 acres/year until 2050; then return to BAU rate) (+350ac/yr till 2050 in MD) afSU2030 (+23,760 acres/year until 2030; then return to BAU rate)(+3500ac/yr till 2030 in MD) afSU2050 (+23,760 acres/year until 2050; then return to BAU rate)(+3500ac/yr till 2050 in MD)

III. Increasing Restocking (Increase supplemental planting to restock understocked stands):

Restock (Annual restocking rate + 4,508 acres/year until 2170 in PA)

(+2,500 acres/year till 2030 then return to baseline rate in MD)

Restock Alt. (Annual restocking rate + 2,500 acres/year until 2050 then return to baseline rate in MD)

IV. Increasing Timber Stand Improvements (TSI):

TSI (Annual thinning rate + 14,892 acres/year until 2170 in PA)(+5,500 acres/year in MD) (Annual prescribed burn rate + 25,000 acres/year until 2170 in PA) (+500 acres/year in MD)

V. Reduced Deforestation (Decrease rate of permanent forest loss):

Reduced Def (Annual deforestation rate -5,149 acres/year until 2170 in PA)(-800 acres/year in MD)

VI. <u>Reduced Diameter Limit Cuts (Eliminate high grading on private lands):</u>

Reduced DLC (Annual DLC removals - 30,559 mt C/year (15% of DLCs in baseline) until DLCs=0 in 2027; DLCs stay at 0 until 2170 in PA) (Annual DLC removals - 2,384 mt C/year (10% of DLCs in baseline) until DLCs=0 in 2030; DLCs stay at 0 until

2170 in MD)

VII. Control Deer Browse (Increase rates of successful deer browse control i.e. fencing):

Control DB (Annual browse control rate +14,459 acres/year until 2170 in PA) (+2000 acres/year in MD)

VIII. Silvopasture (Increase silvopasture adoption through low density planting of trees in pastureland):

Silvopasture (Annual Silvopasture planting rate +15,250 acres/year until 2170 in PA) (+3,115 acres/year in MD)

IX. No Harvest Activities (Reduce all harvest and thinning activities on all lands):

No Harvest (Annual harvest rate -100% acres/year until 2170)

(Annual thinning rate -100% acres/year until 2170)

(Annual DLC rate -100% acres/year until 2170)

Data and Methods

I. Estimation of timber products generated under business as usual (BAU) and alternative carbon management scenarios from the Harvested Wood Products (HWP) model was obtained using the following formula:

 $Volume = \frac{(Carbon * 2)}{Specific Gravity}$

State-specific weighted specific gravities were used for conversion of softwood/hardwood component of forest types in each state

Maryland:	Volume (MCF) softwood 9424.09737 29.87% hardwood 22130.8831 70.13% 31554.98	Pennsylvania:	Volume (MCF) softwood 13573.2432 hardwood 238539.78 total 252113.02	5.38% 94.62%
	totalWeighted Specific Gravitysoftwood0.5075104hardwood0.51647761		Weighted Specific Gravitysoftwood0.39312572hardwood0.57964335	

Estimation of Timber Products

Data obtained from HWPs model in different product stream categories

Variable	Product – General	Product – Specific	For Export?	Unit
	Deverdurged			MDE
ex.roundwood.MBF	Roundwood	Roundwood - for export	Y	MBF
ex_saw.MBF	Sawnwood	Sawnwood - for export	Y	MBF
		Sawnwood logs, new		
D.saw.MBF	Sawnwood	domestic	N	MBF
R.saw.MBF	Sawnwood	Sawnwood, recycled	N	MBF
ex_veneer.MBF	Veneer	Veneer logs - for export	Ŷ	MBF
D.veneer.MBF	Veneer	Veneer logs, new domestic	N	MBF
ex_D.pulp.tons	Pulp	Pulp - for export	Y	tons
ex_M.pulp.tons	Pulp	Pulp from mill residue - for export	Y	tons
ex_RS.pulp.tons	Pulp	Pulp, recycled - for export	Y	tons
D.pulp.tons	Pulp	Pulp	N	tons
M.pulp.tons	Pulp	Pulp from mill residue	N	tons
R.pulp.tons	Pulp	Pulp, recycled	N	tons
ex_D.CP.MCF	Composite panels	Composite panels - for export	Y	MCF
ex_M.CP.MCF	Composite panels	Composite panels from mill residue - for export	Y	MCF
D.CP.MCF	Composite panels	Composite panels	N	MCF
M.CP.MCF D.OI.MCF	Composite panels Other industrial	Composite panels from mill residue Other industrial	N N	MCF MCF
M.bioenergy.tons	Bioenergy	Bioenergy from mill residue	N	tons
D.PPP.MBF	Poles, posts, pilings	Poles, posts, pilings	N	MBF

Economic Tradeoffs of Carbon and Timber Products Estimation

To quantify financial tradeoffs of carbon and timber products resulting from the CBM-CFS management scenarios, Net Present Value for each modeled scenario were estimated and compared to BAU scenario.

$$NPV = \sum \frac{R}{(1+i)^t} - \sum \frac{C}{(1+i)^t}$$

R is the revenue generated from the harvested wood products and/or carbon credits under each management scenario for a certain duration [Short term (2023 to 2032), Medium term (2023 to 2050), Medium-long term (2023 to 2070) and Long term (2023 to 2100)]

C is the costs associated with implementing each modeled management scenario including BAU for the same duration

i is the minimum acceptable real rate of return (RoR) and

t is the time in years during the period considered.

Revenue Estimation

Revenue from timber products estimated as:

Revenue TP = (*Vol. Harvested* * *Stumpage Price*)

Revenue from carbon credits estimated as:

Revenue $CC = (CO_2 equivalent * Price of carbon)$

where,

 CO_2 equivalent = {(Vol. Harvested BAU - Vol Harvest Modeled Scenario)/2} * 3.67

 $(3.67 \text{ is the conversion factor used for converting carbon into CO₂ equivalent)$

Stumpage Price for Revenue Estimation

Average stumpage price (2016 to 2021) in Pennsylvania

Product Type	Stumpage Price	Unit							
Hardwood									
Logs	253.9	\$/Mbf							
Pulp	3.6	\$/ton							
Poles, post, pilings	253.9	\$/ton							
	Softwood								
Logs	94.1	\$/Mbf							
Pulp	3.7	\$/ton							
Poles, post, pilings	94.1	\$/ton							

Average stumpage price (2010 to 2021) in Maryland

Product Type	Stumpage Price	Unit						
Hardwood								
Logs	270	\$/Mbf						
Pulp	3	\$/ton						
Poles, post, pilings	270	\$/ton						
	Softwood							
Logs	156	\$/Mbf						
Pulp	4	\$/ton						
Poles, post, pilings	156	\$/ton						

Starting year 2023, stumpage prices were increased by 3% every year for HWs and 2.5% per year for SWs.

Starting year 2023, stumpage prices were increased by 3% every year for HWs and 1% per year for SWs till 2032 and 2.5% starting 2033.

Percentages chosen based upon historical timber price trends in PA from 2007 to 2017 as per Jacobson (2022)

Forest Management Practices Costs Data for Cost Estimation

Data obtained from Environmental Quality Incentives Program's (EQIP) payment schedule 2022

Forest Practices Costs in Pennsylvania

Type of Forest	EQIP	Per unit cost of implementing	Type of Forest
Management Practice	Code	the management practice	Management
Thinning	666	\$327.2/acre	
Prescribed fire	338	\$75.95/acre	Thinning
Site preparation cost in	490	\$221.74/acre	Prescribed fire
clearcut areas			Site preparatio
Stand establishment cost	612	\$813.70/acre for HW species and	clearcut areas
in clearcut areas		\$390.67/acre for SW species	Stand establis
Afforestation cost	612	\$813.70/acre	Afforestation
Restocking cost	612	\$636.20/acre	Restocking cos
Fencing cost	382	\$387/acre	Fencing cost
Silvopasture planting cost	381	\$128/acre	Silvopasture p

Forest Practices Costs in Maryland

Type of Forest	EQIP	Per unit cost of implementing the
Management Practice	Code	management practice
Thinning	666	\$317.98/acre
Prescribed fire	338	\$68.18/acre
Site preparation cost in	490	\$200.85/acre
clearcut areas		
Stand establishment cost	612	\$797.73/acre for HW species and
in clearcut areas		\$380.97/acre for SW species
Afforestation cost	612	\$696.02/acre
Restocking cost	612	\$380.97/acre
Fencing cost	382	\$393/acre
Silvopasture planting cost	381	\$128/acre

Starting year 2023, all forest practices costs were increased by 1.69% per year to account for inflation.

Carbon Price

- Price per ton of CO₂ equivalent used for financial analysis was \$8.29 dollars for year 2022 (as accessed in Oct 6,2022).
- Transaction cost of carbon was deducted from the market price to get the price of carbon used for financial analysis
- Transaction cost of carbon was estimated using the formula proposed by Pearson et al. (2013).

 $TC = 1 + 0.23 * P^{c}$

where TC is the transaction cost of carbon,

1 represents the fixed cost of carbon (\$1 per ton) and 0.23*P^c represents the variable cost of carbon which is assumed to be 23% of the market price of carbon.

Starting year 2023, carbon price was assumed to increase by 2% every year

Live Carbon Prices Today

CarbonCredits.com Live Carbon Prices	Last	Change	YTD
Compliance Markets			
European Union	€78.67	0.00 %	-1.93 %
California	\$30.83		-3.72 %
Australia (AUD)	\$28.00	0.00 %	-45.10 %
New Zealand (NZD)	\$80.30	0.00 %	+17.31 %
South Korea	\$14.24	0.00 %	-43.12 %
Voluntary Markets			
Aviation Industry Offset	\$2.98	0.00 %	-62.75 %
Nature Based Offset	\$7.40	0.00 %	-47.44 %
Tech Based Offset	\$2.37	0.00 %	-53.35 %

CarbonCredits.com Real-time Pricing (Updates Every 5 Mins)

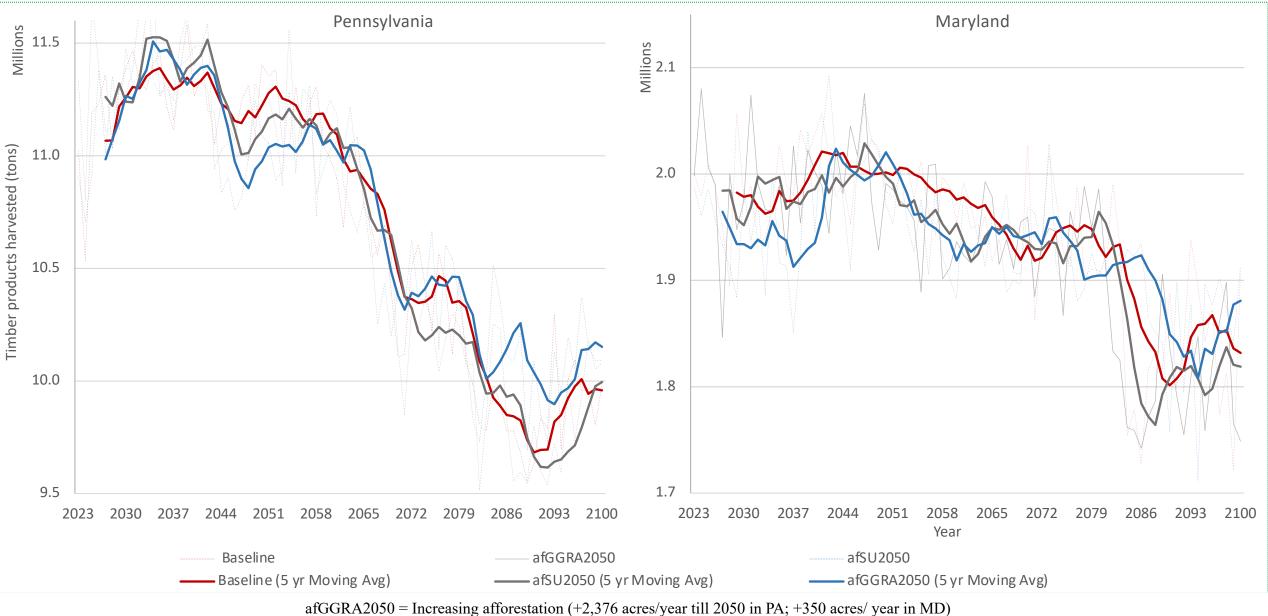
Click here to learn how carbon credits are priced.

https://carboncredits.com/carbon-prices-today/?sl=cc-googleads&gclid=Cj0KCQjw852XBhC6ARIsAJsFPN2FVsJRnxzxC42TZMKSM-Ue3wo7hVTTiOkz1eaJdi_sqLdghAJ853gaAkTdEALw_wcB

Findings

Timber products harvested (tons)

BAU Vs Extended Rotation

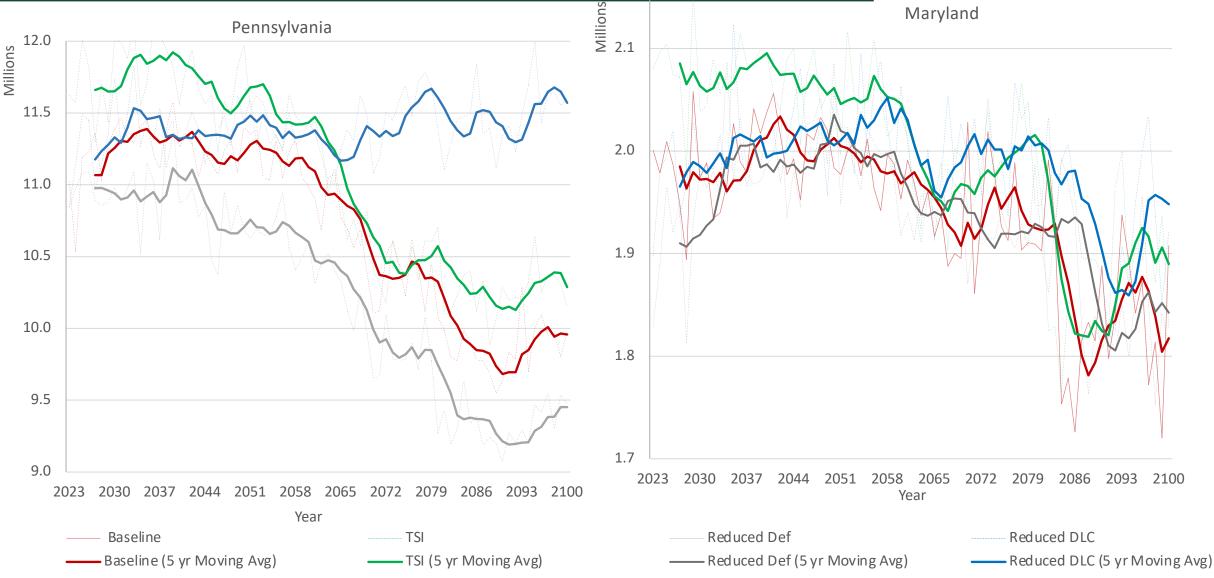

Maryland

Extended Rotation= Increasing average harvest age of stands (+30 years on H/SWs; -10 years on Aspen in PA) (+30 years on HWs and +20 years on loblolly pine till 2170 in MD) Extended Rotation Alt.= Increasing average harvest age of stands (+30 years on HWs and +40 years on loblolly pine till 2170 in MD)

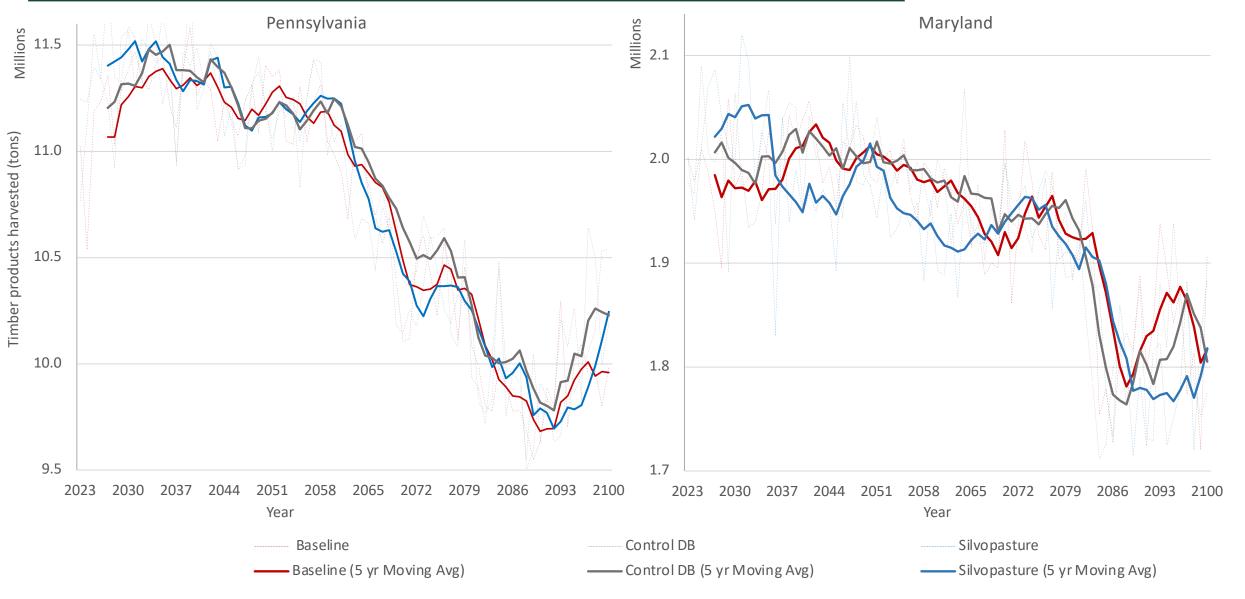
MICHIGAN STATE UNIVERSITY

BAU Vs Afforestation

afSU2050 = Increasing afforestation scale up ($\pm 23,760$ acres/year till 2050 in PA; ± 3500 acres/year in MD)


MICHIGAN STATE UNIVERSITY

BAU Vs Restocking


Restock = Increasing supplemental planting (+4,508 acres/year till 2170 in PA; +2500 acres/year till 2030 in MD), Restock Alt = Increasing supplemental planting (+2500 acres/year till 2050)

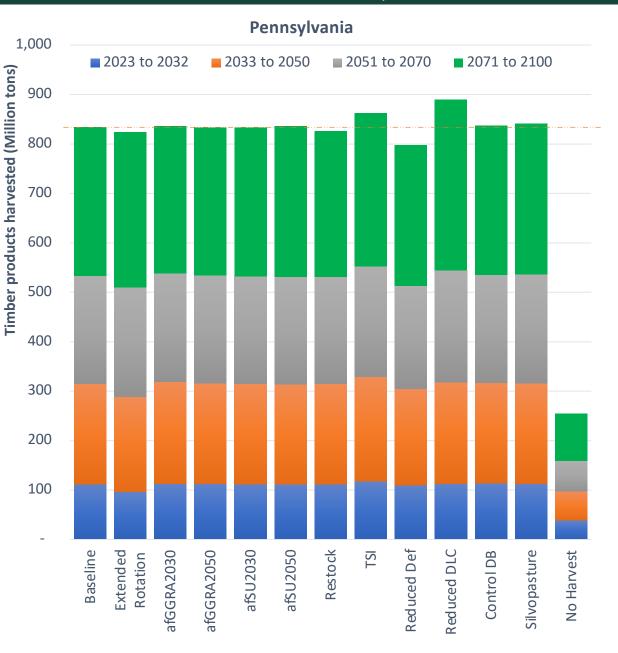
BAU Vs TSI, Reduced DLC and Reduced Deforestation Scenarios

TSI = Annual thinning rate (+14,892 acres/year till 2170 in PA; +5500 acres/year in MD); Annual prescribed burn rate (+25,000 acres/year till 2170 in PA; +500 acres/year in MD) Reduced DLC = (-30,559 mt C/year until DLC = 0 in 2027; DLCs stay at 0 until 2170 in PA) (-2384 mt C/year until DLC = 0 in 2030; DLCs stay at 0 until 2170 in MD) Reduced Deforestation = (-5,149 acres/year until 2170 in PA) (-800 acres/year until 2030; then return to baseline in MD)

BAU Vs Controlled Deer Browse and Silvopasture Scenarios

Controlled Deer browse = Annual browse control rate (+14,459 acres/year until 2170 in PA) (+2,000 acres/year until 2170 in MD) Silvopasture = Annual Silvopasture planting rate {+15,250 acres/year (0.5% of eligible acres) until 2170 in PA} (+3,511 acres/year until 2170 in MD)

Scenarios	Harvested timber products (in million tons) at the specified time frame									
	Short	Medium	Medium-long	Long Term						
	Term	Term	Term							
Baseline	112	315	533	834						
Extended										
Rotation	96	289	510	825						
afGGRA2030	113	319	538	836						
afGGRA2050	113	316	534	833						
afSU2030	112	315	532	833						
afSU2050	112	313	531	836						
Restock	112	315	531	826						
TSI	117	329	552	862						
Reduced Def	109	305	513	798						
Reduced DLC	113	318	544	889						
Control DB	114	317	535	837						
Silvopasture	113	316	536	841						
No Harvest	39	97	159	254						

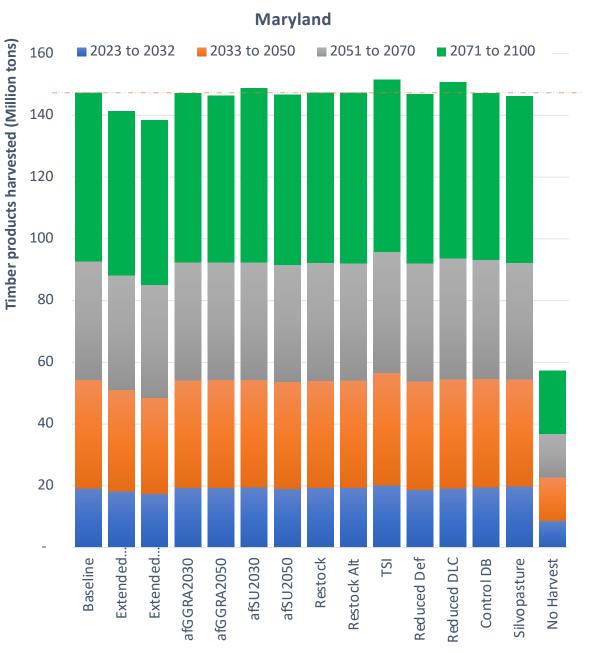

Pulp: 49%

Sawlogs: 38.5%

Composite panels: 7.5%

Bioenergy: 4.6%

Poles, posts and pilings: 0.25%

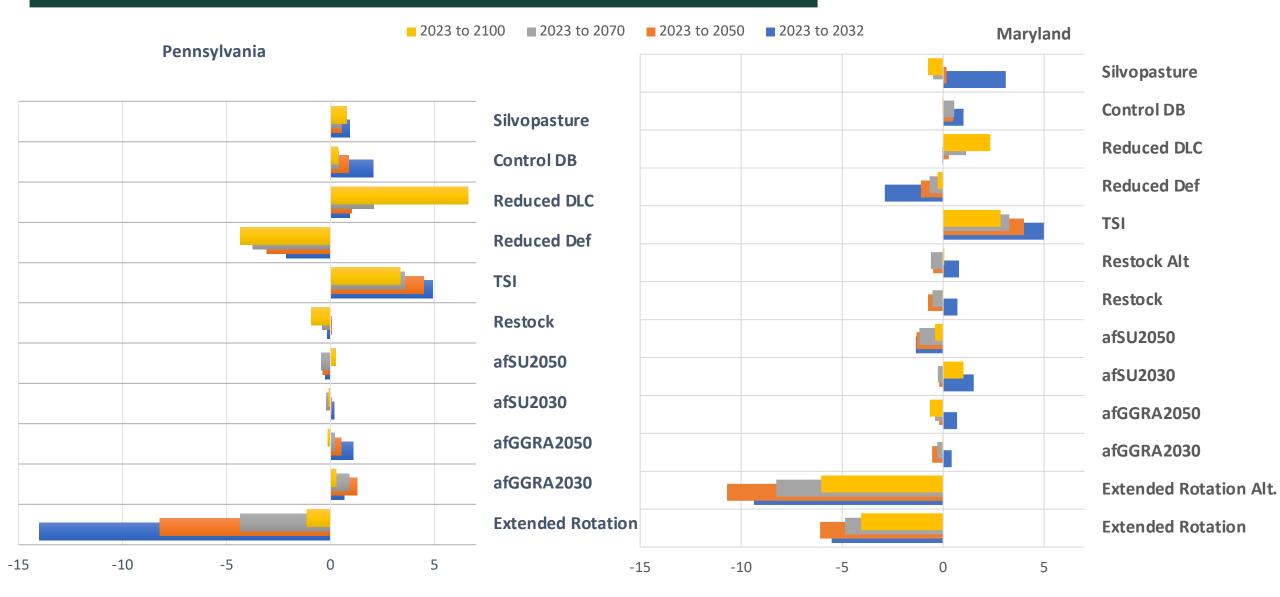


Cumulative timber products harvested

Maryland: Timber Products Harvested

Scenarios	Harvested timber products (in million tons) at the specified time frame								
	2023 to 2032	2023 to 2050	2023 to 2070	2023 to 2100					
Baseline	19	54	93	147					
Extended Rotation	18	51	88	141					
Extended Rotation									
Alt.	17	49	85	138					
afGGRA2030	19	54	92	147					
afGGRA2050	19	54	92	146					
afSU2030	20	54	92	149					
afSU2050	19	54	92	147					
Restock	19	54	92	147					
Restock Alt	19	54	92	147					
TSI	20	57	96	152					
Reduced Def	19	54	92	147					
Reduced DLC	19	55	94	151					
Control DB	19	55	93	147					
Silvopasture	20	55	92	146					
No Harvest	9	23	37	57					

Pulp: 68% Sawlogs: 25% Composite panels: 4% Bioenergy: 2% Poles, posts and pilings: 1%



Cumulative timber products harvested

MICHIGAN STATE UNIVERSITY

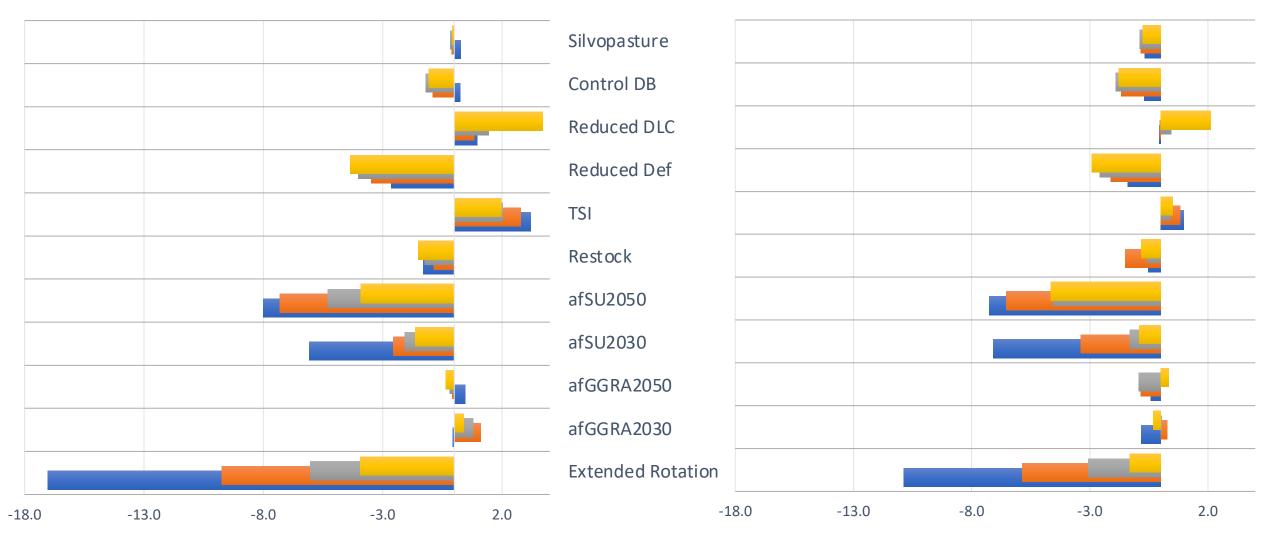
Economic Tradeoff in Timber Products and

Change in timber products harvested compared to BAU (%)

Net Present Value (billion Dollars)

10									2023	to 203	2	2033	to 2050
9			~					33		S			
8	2.00	2.08	1.98	1.98	2.00	2.03	1.95	2.03	1.89	2.25	1.99	2.01	
7		Λ	6					g		ю		~	
6	2.29	R	2.29	2.28	2.26	2.27	2.24	2.2	2.16	2.35	2.24	2.28	
5													
4	3.02		3.08	3.01	3.02	Ħ	3.00	3.09	2.90	3.04	2.97	3.01	
3	-	2.89		m	Э	2.81	œ		2.		2	m	
2													
1	2.20	1.83	2.20	2.21	2.07	2.02	2.17	2.27	2.14	2.22	2.21	2.21	
-	Baseline	Extended	afGGRA2030	afGGRA2050	afSU2030	afSU2050	Restock	TSI	Reduced Def	Reduced DLC	Control DB	Silvopasture	No Harvest

2051 1 0	to 20	70	2071	to 21(00		_	_				_	
9	2.00	त्त	1.97	2.10	5	Λ	1.96	2.02	2	2.17	8	1.99	
8	2.	2.11	÷	2.	2.01	1.90	1.0	2	1.92	~	1.98	1	
7	6		∞	10						2		10	
6	2.29	2.36	2.28	2.26	2.36	2.29	2.32	2.27	2.20	2.32	2.23	2.26	
5													1.03
4	3.02	2.95	3.05	2.99	3.00	2.84	2.95	3.04	2.94	3.02	2.95	2.99	1.25
3		5				7							
2						V							1.73
1	2.20	1.96	2.18	2.19	2.04	2.04	2.19	2.22	2.17	2.20	2.18	2.18	26
_								V					1.26
	Baseline	Extended Rotation	afGGRA2030	afGGRA2050	afSU2030	afSU2050	Restock	TSI	Reduced Def	Reduced DLC	Control DB	Silvopasture	No Harvest


Cumulative NPV without carbon credits

Cumulative NPV with carbon

Pennsylvania: Net Present Value (NPV)


Pennsylvania: % Change in NPV

■ 2023 to 2100 ■ 2023 to 2070 ■ 2023 to 2050 ■ 2023 to 2032

% Change in NPV without Carbon credits compared to BAU

% Change in NPV with carbon compared to BAU

0.25

0.30

0.35

0.27

Silvo pasture

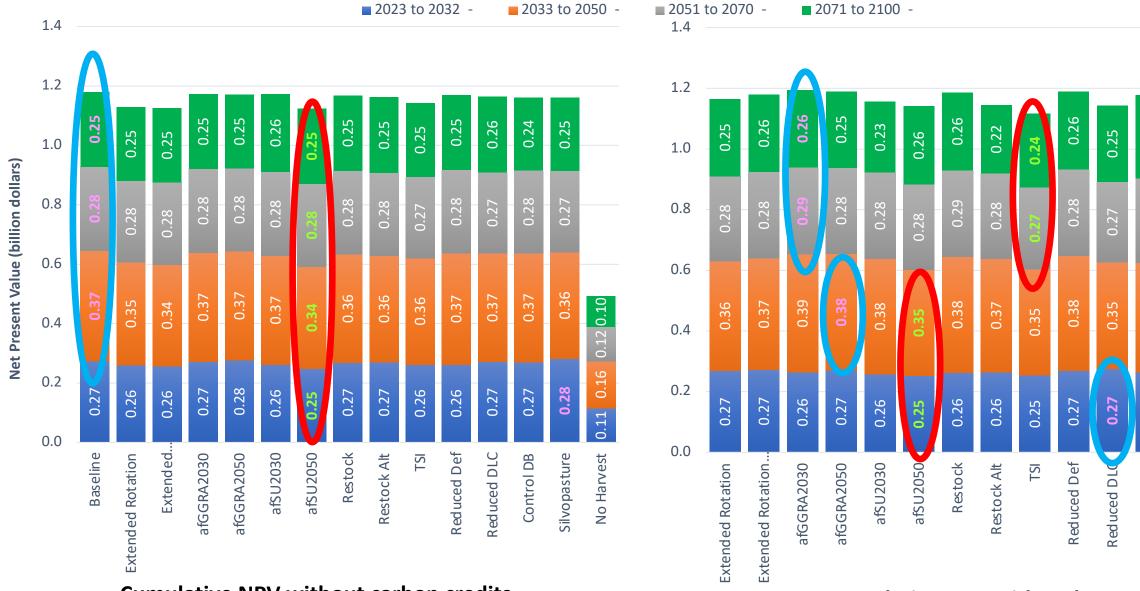
0.17

0.20

0.29

0.21

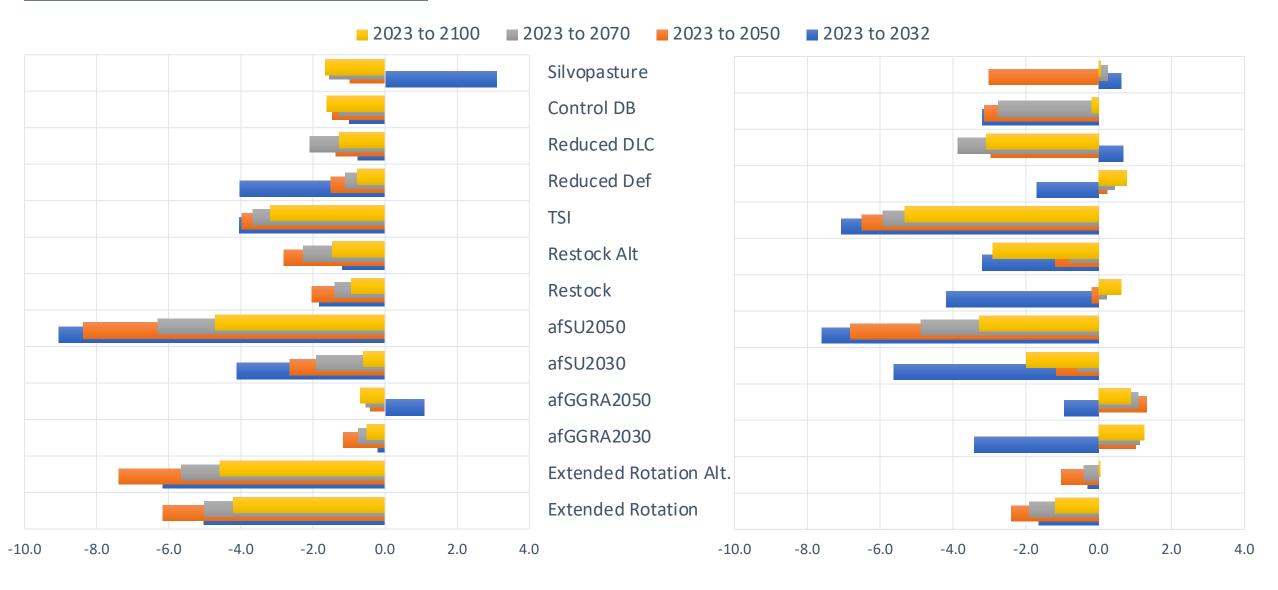
No Harvest


0.27

0.36

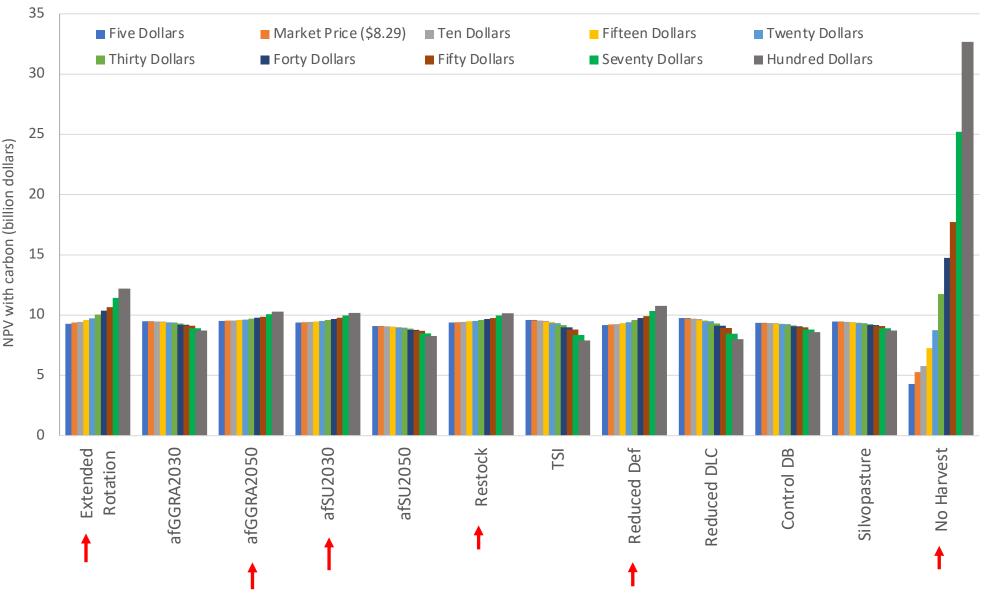
0.26

Control DB


Maryland: Net Present Value (NPV)

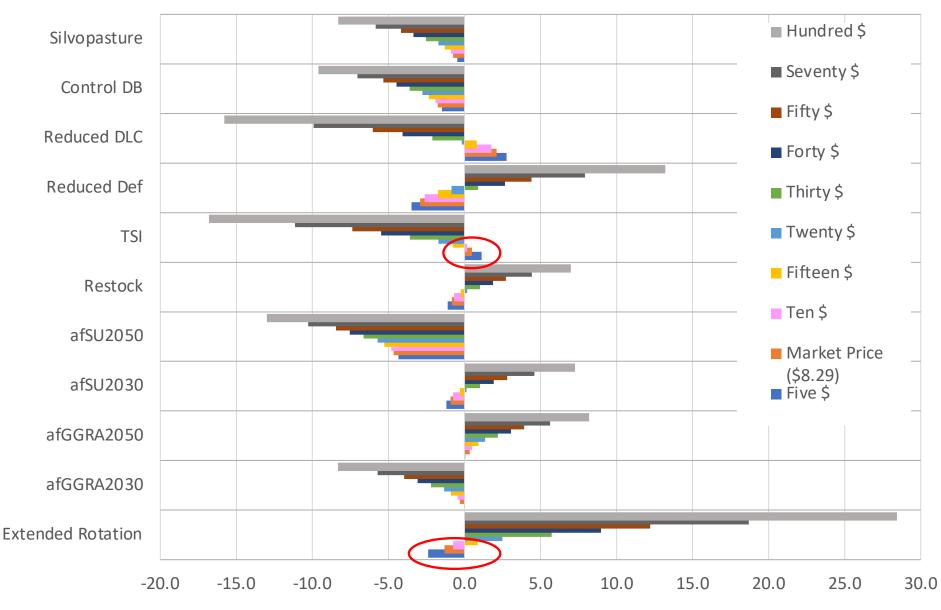
Cumulative NPV with carbon

Cumulative NPV without carbon credits


Maryland: % Change in NPV

% change in NPV with carbon compared to BAU

% change in NPV without carbon compared to BAU


Sensitivity Analysis (Change in Carbon Price)

- With the increase in price of carbon, NPV increases in scenarios that accumulate more biomass and harvest less volume such as no harvest, extended rotation and reduced deforestation scenarios
- NPV decreases with increasing carbon price in scenarios that harvest more volume such as TSI and Reduced DLC

NPV under different carbon management scenarios at varying carbon prices in the Pennsylvania (2023 to 2100)

Sensitivity Analysis (Change in Carbon Price)

- If the market price of carbon exceeds \$15/t CO₂e, NPV in extended rotation in more than BAU while NPV in TSI and reduced DLC drops below BAU.
 - With increasing price of carbon, NPV increases in scenarios that accumulate more biomass and harvest less volume (Extended rotation, Reduced deforestation)

Percentage change in NPV with carbon compared to baseline (BAU) scenario (2023 to 2100)

Key Takeaways

- NPV is positive under all scenarios considered meaning that economically all scenarios are feasible to undertake without incurring a loss in investment.
- However, TSI is the only scenario in Pennsylvania that consistently yields NPV higher than that under BAU at all timeframes considered with or without carbon benefits
- For scenarios like extended rotation or no harvest to yield higher NPV compared to BAU scenario, market price of carbon needs to be higher than what it is at present (at least \$15 assuming that all unharvested volume is enrolled in carbon program).
- In Maryland, though volume harvested under alternative management scenarios such as TSI and controlled deer browse were greater than that under BAU, the costs incurred were also higher compared to BAU and so yielded lower NPV. When carbon credits were considered, scenarios that accumulate more biomass with reasonable management costs such as afforestation 2030 and 2050, restocking, and reduced deforestation scenarios yielded higher NPV compared to baseline in Maryland.
- For TSI and reduced DLC scenarios to yield higher NPV compared to BAU scenario in Maryland, stumpage price needs to be higher than the current stumpage price.

Thank you !

<u>Contact</u>

Raju Pokharel, PhD

Assistant Professor

517-353-9447

raju2020@msu.edu

Shivan GC

Research Assistant

gc@msu.edu

